MIT researchers previously demonstrated a robotic arm that combines visual information and radio frequency (RF) signals to find hidden objects that were tagged with RFID tags (which reflect signals sent by an antenna). Building off that work, they have now developed a new system that can efficiently retrieve any object buried in a pile. As long as some items in the pile have RFID tags, the target item does not need to be tagged for the system to recover it.
For humans, finding a lost wallet buried under a pile of items is pretty straightforward — we simply remove things from the pile until we find the wallet. But for a robot, this task involves complex reasoning about the pile and objects in it, which presents a steep challenge.
The algorithms behind the system, known as FuseBot, reason about the probable location and orientation of objects under the pile. Then FuseBot finds the most efficient way to remove obstructing objects and extract the target item. This reasoning enabled FuseBot to find more hidden items than a state-of-the-art robotics system, in half the time.
This speed could be especially useful in an e-commerce warehouse. A robot tasked with processing returns could find items in an unsorted pile more efficiently with the FuseBot system, says senior author Fadel Adib, associate professor in the Department of Electrical Engineering and Computer Science and director of the Signal Kinetics group in the Media Lab.
“What this paper shows, for the first time, is that the mere presence of an RFID-tagged item in the environment makes it much easier for you to achieve other tasks in a more efficient manner. We were able to do this because we added multimodal reasoning to the system — FuseBot can reason about both vision and RF to understand a pile of items,” adds Adib, one of the authors of the research paper.
Source: indiaai.gov.in